C12 - 4.1 - Related Rates Circle/Sphere A/V Notes

Find the rate of change.

The radius of a circle is growing at a rate of 4 m/s. What is the rate at which the area within the circle is

changing when the radius is 20m?

$$\frac{r}{t} = 4$$

$$\frac{dr}{dt} = 4 \qquad \qquad \frac{dA}{dt} \Big|_{r=20} = ?$$

$$A = \pi r^{2}$$

$$\frac{dA}{dt} = 2\pi r \cdot \frac{dr}{dt}$$

$$\frac{dA}{dt} = 2\pi r \cdot (4)$$

$$\frac{dA}{dt} = 8\pi r$$

$$= 8\pi (20)$$

$$= 160\pi$$

$$\frac{dA}{dt} = 160\pi \frac{m}{s^{2}}$$

$$\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dt} \qquad \frac{dA}{dr} = 2\pi r \times \frac{dr}{dr} \qquad \frac{dr}{dr} = 1$$

$$\frac{dr}{dr} = 1$$

The volume of a balloon is increasing at 256 meters cubed per second. How fast is the radius increasing when the radius is two meters?

$$\frac{dV}{dt} = 256 \frac{m}{s^3} \qquad \frac{dr}{dt}|_{r=2} = ?$$

$$\frac{dr}{dt}|_{r=2} = ?$$

$$V = \frac{4}{3}\pi r^3$$

$$\frac{dV}{dt} = 3 \times \frac{4}{3}\pi r^{3-1}\frac{dr}{dt}$$

$$\frac{dV}{dt} = 4\pi r^2\frac{dr}{dt}$$

$$256 = 4\pi (2)^2\frac{dr}{dt}$$

$$\frac{dr}{dt} = \frac{16}{\pi}\frac{m}{s}$$

Therefore the radius is changing at $\frac{16}{\pi} \frac{m}{s}$ when the radius is 2 m.

Therefore the area is changing at a rate of $160\pi \frac{m^2}{s}$ when the radius is 20m.

C12 - 4.2 - Train Pythag/Spotlight Sim Tri Rel Rat Notes

Train 'a' leaves Vancouver heading South at 10 m/s and train 'b' leaves heading East at 5 m/s? How far are they a part after two minutes? What is the speed at which the trains are moving apart at that time?

A 2 m tall person is walking away from a spotlight, 15 m from a wall, towards the wall at 0.7 m/s. How fast is the shadow on the wall changing when they are 7 m from the spotlight?

C12 - 4.2 - Ladder Trig Related Rates Notes

The top of a 16 ft ladder slides down a wall at a rate of 3 ft/s. At what rate is the base of the ladder sliding away from the wall when the latter is at a height of 8 ft on the wall.

$$\frac{dy}{dt} = -3\frac{ft}{s}$$

 $\frac{dy}{dt} = -3\frac{ft}{s}$ *Length is shrinking: Derivative is Negative.

$$\frac{dx}{dt}\big|_{y=8} = ?$$

$$x^{2} + y^{2} = c^{2}$$

$$x^{2} + 8^{2} = 16^{2}$$

$$x = \sqrt{16^{2} - 8^{2}}$$

$$x = \sqrt{192}$$

$$x = 8\sqrt{3}$$

$$x^{2} + y^{2} = c^{2}$$

$$2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 2c\frac{dc}{dt}$$

$$2(8\sqrt{3})\frac{dx}{dt} + 2(8)(-3) = 0$$

$$2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 2c\frac{dc}{dt}$$
 *We can substitute constants into the formula

$$\frac{dx}{dt} = \sqrt{3} \frac{ft}{s}$$

What is the rate the angle at the bottom of the ladder changing?

$$cos\theta = \frac{x}{r}$$

$$cos\theta = \frac{x}{16}$$

$$-sin\theta \frac{d\theta}{dt} = \frac{1}{16} \frac{dx}{dt}$$

$$-\frac{8}{16} \frac{d\theta}{dt} = \frac{1}{16} \sqrt{3}$$

$$\frac{d\theta}{dt} = -\frac{\sqrt{3}}{8} \frac{rad}{s}$$

*I used cos because it used the rate I already solved on the top. Using sin and tan is possible but much more difficult based on the information and previously solved. We want our constant on the bottom.

$$\sin\theta = \frac{8}{16}$$
$$\theta = \sin^{-1}(\frac{1}{2})$$

*Real life is in Radians. Degrees are for children.

C12 - 4.2 - Similar Triangles/Cos Law Related Rates Notes

A 5 foot tall woman is walking away from a 20 foot lamp post at 3 m/s. What rate is her shadow increasing when she is 30 feet from the lamp post; and is her shadow getting bigger or smaller. How fast is the tip of her shadow moving?

$$\frac{dx}{dt} = 3\frac{m}{s}$$

$$\frac{dy}{dt}\Big|_{x=30} = ?$$

$$\frac{5}{20} = \frac{y}{x+y}$$

$$5x + 5y = 20y$$

$$5x = 15y$$

$$x = 3y$$

$$\frac{dx}{dt} = 3\frac{dy}{dt}$$

$$3 = 3\frac{dy}{dt}$$

$$\frac{dz}{dt} = \frac{dy}{dt} + \frac{dx}{dt}$$

$$\frac{dz}{dt} = 1 + 3$$

$$\frac{dy}{dt} = 1\frac{ft}{s}$$

$$\frac{dz}{dt} = 4\frac{m}{s}$$

A float plane rising at 30 degrees above the horizontal flies over a boat at an altitude of 100 m at 60 m/s. How fast is the distance between the boat and the plane increasing after five seconds?

$$d = 300 m$$

*Word Problems

 $d = 60 \times 5$

 $120^0 = \frac{7\pi}{6}$

*That would have been a tough product rule if more things were changing

$$c^{2} = a^{2} + b^{2} - 2abcosC$$

$$2c\frac{dc}{dt} = 0 + 2b\frac{db}{dt} - 2acosC\frac{db}{dt}$$

$$2(389.8)\frac{dc}{dt} = 0 + 2(300)(60) - 2(100)\left(-\frac{\sqrt{3}}{2}\right)(60)$$

$$\frac{dc}{dt} = 59.5\frac{m}{s}$$

C12 - 4.3 - Cone V/Similar Triangles Related Rates Notes

Find the rate of change.

A cone with a radius of 3 cm and height of 6 cm is filling with water where the height of the water level is increasing at a rate of 0.2 cm/s. What is the rate the volume is increasing when the height of the water level is 5 cm.

$$\frac{dh}{dt} = 0.2$$

$$\frac{dV}{dt}|_{h=5} = ?$$

$$V = \frac{1}{3}\pi r^2 h$$

$$V = \frac{1}{3}\pi \left(\frac{h}{2}\right)^2 h$$

$$V = \frac{1}{12}\pi h^3$$

$$\frac{dV}{dt} = 3 \times \frac{1}{12}\pi h^2 \frac{dh}{dt}$$

$$\frac{dV}{dt} = \frac{1}{4}\pi (5)^2 (0.2)$$

$$\frac{dV}{dt} = \frac{5\pi}{4} \frac{cm}{s}$$

*We can't take this product so we must use similar triangles/other info

$$\frac{dV}{dt} = \frac{1}{3}\pi \left(2r\frac{dr}{dt}h + \frac{dh}{dt}r^2 \right)$$

C12 - 4.4 - Sphere Tight Rope Notes

$$\frac{dS}{dt}|_{x=25} = ? \qquad \frac{x}{70}$$

$$\frac{dS}{dt}$$

$$\frac{dS}{dt}$$

$$\frac{dS}{dt} = \frac{20}{7} \frac{m}{s}$$

$$C = 50(5 - x) + 80\sqrt{x^2 + 9}$$

$$Cost = length \times \frac{cost}{length}$$

$$C' = 0 = 0$$

Number Line

$$Cost = length \times \frac{cost}{length}$$

C12 - 4.5 - Demand Profit Max

16\$ units sell 20 units. 14\$ units sell 30 units.

Find q to max R

R = pq

C = 4x + 140

p = price

x = quantity

R = Revenue

C = CostP = Profit

P = R - C

X	p	R	C	P
20	16	320	240	120
30	14	420	260	160

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
$$m = \frac{16 - 15}{20 - 30}$$

$$y - y_1 = m(x - x_1)$$
$$p - 16 = -\frac{1}{5}(x - 20)$$

$$\boxed{m = -\frac{1}{5}}$$

Р

$$p = -\frac{1}{5}x + 20$$

Demand Function

Down \$1 Sell 5 more

R = px	
$R = \left(-\frac{1}{5x}\right)$	+ 20)
$R = -\frac{1}{5}x^2 - \frac{1}{5}x^2 $	+ 20 <i>x</i>

$$R = -\frac{1}{5}x^2 + 20x$$

$$p = -\frac{1}{5}x + 20$$
$$p = -\frac{1}{5} + 20$$

 χ

$$P = R - C$$

$$P = \left(-\frac{1}{5x} + 20\right)x$$

$$P = -\frac{1}{5}x^2 + 20x - (4x + 140)$$

$$P = -\frac{1}{5}x^2 + 16x - 140$$

$$\frac{dP}{dx} = -\frac{2}{5}x + 16$$

$$P = -\frac{1}{5}x + 20$$

$$P = -\frac{1}{5}x^2 + 16x - 140$$

$$\frac{dP}{dx} = -\frac{2}{5}x + 16$$

$$P = -\frac{1}{5}x + 20$$

$$P = -\frac{1}{5}x^2 + 16x - 140$$

$$\frac{dP}{dx} = -\frac{2}{5}x + 16$$

$$P = -\frac{1}{5}x + 20$$

$$\frac{dx}{dx} = -\frac{5}{5}x + 16$$
$$0 = -\frac{2}{5}x + 16$$

$$x = 40 \text{ units}$$

$\frac{dP}{dr} = 0 \text{ or } MR = MC$		p = 8
dq	$\overline{} = 0 \text{ or } MR = MC$	\mathcal{C}

Max Profit

$$R = pq$$

$$R = (16 - 1x)(20 + 5x)$$

$$R = -5x^{2} + 60x + 320$$

$$x = \# p \ decreases$$

$$-$$
\$1 q down, $q + 5$

$$\frac{dR}{dx} = -10x + 60$$

$$R = -5x^2 + 60x + 320$$

$$R = -5(6)^2 + 60(6) + 320$$

$$10x + 60$$

$$R = 500$$

$$0 = -10x + 60$$

Down \$6, Rev = 500

C12 - 4.5 - Growth Elasticity Max Rev Notes

$$F'(500\$) = ?$$
; $F(500\$)$ $k = 5\%$ $F = Pe^{kt}$

$$F = Pe^{kt} F = Pe^{0.05t} F = Pe^{0.05t} F = Pe^{0.05t} F' = Pe^{0.05t} \times 0.05 500 = Pe^{0.05t} \frac{500}{P} = e^{0.05t} \ln\left(\frac{500}{P}\right) = 0.05t lne$$

$$t = \frac{\ln\left(\frac{500}{P}\right)}{0.05}$$

$$F' = Pe^{0.05t} \times 0.05$$

$$F' = Pe^{0.05 \frac{\ln(\frac{500}{P})}{0.05}} \times 0.05$$

$$F' = Pe^{\ln(\frac{500}{P})} \times 0.05$$

$$F' = P\left(\frac{500}{P}\right) \times 0.05$$

$$e^{\ln\left(\frac{500}{P}\right)} = \frac{500}{P}$$
$$e^{\ln_e a} = a$$

$$F' = 25 \frac{\$}{year}$$

$$q(p) = q$$

Quantity is a function of Price

$$R = pq$$

$$\frac{DR}{dp} = \frac{dp}{dp}q + \frac{dq}{dp}p$$
Product
Rearrange
$$\frac{DR}{dp} = p\frac{dq}{dp} + q$$

$$\frac{dp}{dp} = 1$$

$$\frac{DR}{dp} = q(\frac{p}{q}\frac{dq}{dp} + 1)$$

$$\frac{DR}{dp} = q(E+1)$$

$$E(p) = \frac{p}{q} \frac{dq}{dp}$$

Price vs Quantity

$$q + 50p^2 = 240$$

Find q to max Rev

Elasticity

$$q + 5p^{2} = 240$$

$$\frac{dq}{dp} + 10p\frac{dp}{dp} = 0$$

$$\frac{dp}{dp} = 1$$

$$E(p) = \frac{p}{q}\frac{dq}{dp}$$

$$E(p) = \frac{p}{q} \times -10p$$

$$E(p) = -\frac{10p^{2}}{q}$$

$$E(p) = -\frac{10p^{2}}{q}$$

Sell 10 less each increase in \$p

$$E(p) = \frac{p}{q} \frac{dq}{dp}$$

$$E(p) = \frac{p}{q} \times -10p$$

$$E(p) = -\frac{10p^2}{q}$$

$$-1 = -\frac{10p^2}{q}$$

$$60p^{2} = 240$$

$$p^{2} = 4$$

$$p = 2$$

$$E(p) = -1; @ max$$

 $q + 50p^2 = 240$

 $10p^2 + 50p^2 = 240$ $q = 5(2)^2$

 $q = 10p^{2}$